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Abstract

A new short-period event detector has been implemented on the
Seismic Research Observatories. For each signal detected, a printed
output gives estimates of the time of onset of the signal, direction
of the first break, quality of onset, period and maximm amplitude
of the signal, and an estimate of the variability of the background
noise. On the SRO system, the new algorithm runs ~2.5X faster than
the former (power level) detector. This increase in speed is due
to the design of the algorithm: all operations can be performed by
simple shifts, additions, and comparisons (floating point operations
are not required). Even though a narrow-band recursive filter is not
used, the algorithm appears to detect events competitively with those

algorithms that employ such filters. Tests at Albuquerque Seismological
Laboratory on data supplied by Blandford suggest performance commensurate

with the on-line detector of the Seismic Data Analysis Center,
Alexandria, Virginia.

Key Words: Digital event detector, signal detector, signal analyzer,
Seismic Research Observatories, SRO, ASRO

INTRODUCTION

The purpose of this report is to describe an event detector that has been
implemented on the Seismic Research Observatories (SRO) and the Modified High-

Gain Long-Period Observatories (ASRO). The new detector is an improvement
over the former one that was described by Unitech (1974, pp. 42-59).

The former detector, a power level algorithm, employed recursive filters.
In some instances, these filters exhibited numerical overflow. Also,

the former detector required a large percentage of the available
processing time, due to software multiply and divide operations in the
recursive filters.

The new detector operates on the digital data of the short-period
vertical channel of each of the SRO and ASRO systems, as did the power
detector. (The short-period response of the SRO was described by Peterson
et al. (1976) and the short-period response of the ASRO is similar to the
SRO response.) The output of the new digital detector is designed to
emulate the analysis by a human of the short-period SRO helicorder display.
For each signal detected, this printed output gives estimates of time of
onset of the signal, direction of the first break, quality of the onset
and first break determinations, period and maximum amplitude of the signal,
and an estimate of the variability of the background noise.

The new algorithm has been designed for programming on very elementary
computers: all operations, including filtering, can be implemented by
simple additions, shifts, and comparisons. This design has eliminated the
overflow problem of the former detector and has made available much more
processing time for other operationms.



OVERVIEW OF FLOW OF OPERATIONS

The overview of the flow of the operations is shown by Figure 1 and
described below. The numerals below correspond to the notation on the flow
chart (Figure 1).

I.

II.

III.

Iv.

VI.

VII.

The input time series is filtered. Although any type of filter
could be employed, we use a simple sum and difference (finite
impulse response, FIR) bandpass filter on the SRO and ASRO
systems.

Relative maximums and minimums (peaks and troughs) of the filtered
series are found, and successive peaks and troughs are differenced.
These differenced values, together with their associated times, are
the time series (called the P-T series) that is processed by the
remainder of the detector. Each associated time is for the last
sample of the subset that defined the P-T value; i.e. for a P-T
value that defines a trough-to-peak amplitude, the P-T time is

that of the peak, and for a peak-to-trough amplitude, the P-T time
is that of the trough.

An estimate (s') of the dispersion (variability) of the P-T series
is made.

Three thresholds (Thl, Th2, Th3) are calculated. All three are a
function of s', with Thl1>Th2>Th3. Thresholds Thl and Th2 are used
to detect events, and TH3 is used to search for onsets of detected
events.

Each new value in the P-T series is compared to Thl and Th2

that (as described above) are related to the dispersion of the P-T
series. A detection is declared if, in a fixed time window
(normally 4 sec) one value of the rectified P-T series exceeds Thl
and two other rectified values exceed Th2, or if m rectified values
exceed Th2 only (normally m = 4), subject to two restrictions:
namely, additional processing by two more windows that perform
quasi-bandpass filtering. These two windows, named Filhi and Fillo,
are subwindows of the 4-second window, and they are described in the
next section.

When a detection has been made, Th3 is used to search for the time
of onset of the signal. The search begins two P-T values before
the first one that exceeded Th2.

Parameters that describe the signal are estimated and output. These
include the onset time, the direction of first break, quality of
onset and first break, average period and maximum amplitude of the
first 4 cycles of the signal, and s'.
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Figure 1. General flow chart of the algorithm. Roman numerals on the left of
the illustration correspond to those describing the algorithm in the
text. Routines called are shown on the right of the illustration.



DETAILS OF THE ALGORITHM
Whereas much of the flow of the program can be easily seen from the
general flow chart (Figure 1) together with the general descriptions, some of
the procedures need further explanation.

Filtering the Input Data

Both formal and informal filtering are performed. The formal filter
currently used for the SRO is a simple sum and difference filter whose
response is given in Figure 2. Also shown there is the attenuation of the
first one-half cycle of a transient sine wave, relative to the steady-state
response, as a function of frequency; in the band 0.5-2.5 Hz, the first
break is attenuated a maximum of only 3.7 dB. In contrast a Butterworth 4-pole
bandpass filter (0.5-2.5 Hz) attenuates the first break by a maximum of 8 dB
in this band. If microseisms or cultural noise conditions require it, we are
prepared to implement a narrow-band filter in the detector. However, to
preserve information on the first break of the signal, we prefer the simple
filter of Figure 2. Should experience dictate the need for a narrower band-
pass filter, or one with a steeper roll-off, we may implement another FIR
filter with a response as in Figure 3. An FIR filter with this response can
be implemented with ten coefficients, all of which are integer powers of 2.

The algorithm employs four different types of informal filtering. The
first is performed in PONE and the remainder are performed in EVENT. As
described previously, the P-T series is formed from the output of the formal
band-pass filter. Since the P-T series is made by differencing the successive
maximums and minimums, forming it attenuates low frequency information. This
type of informal filtering is exemplified by model data of Figure 4; it
demonstrates how data in the pass band of the filter (2 Hz) might attenuate
data of lower frequencies. Second, for a detection to occur, at least three
values (not necessarily consecutive values) of the rectified P-T series must
exceed Th2 in the moving time window (typically 4 sec). Thus, for a steady-
state sine wave, signals having periods longer than 4.0 sec will not be
detected, regardless of amplitude. Third, successive rectified P-T values
greater than Th2 (in the 4-sec window) must occur within a subwindow whose
length is determined by the input parameter Fillo (typically 2 sec).

Otherwise, if the time between two successive values is greater than Fillo, the
beginning of the 4-second window will be moved to the position of the last P-T
value that exceeded Th2. Normally, Fillo is used to fine tune the detector.
Fourth, when a rectified P-T value exceeds Th2, winnowing for a time
determined by the parameter Filhi (typically 0.2 sec) is performed: P-T values
in this small subwindow are not counted towards a detection, regardless of
their amplitude. In some instances, winnowing is used to reject "'ringing" of
the filter. When used in this manner, the value for Filhi should be greater
than the time difference between the first minimum and the first maximum of the
impulse response of the filter (see Figure 5). The rejection of 'ringing" is
useful mainly when Th2 is set to a very small value (i.e. <1.0xs' where

typical values are >1.5xs'). Also, winnowing may be used to reject spikes and
short bursts of cultural noise occasionally found in the input time series.
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Figure 2. Steady-state response of filter F1 together with its response
to the first one-half cycle of a sine-wave transient. Filter
equation and coefficients are shown.
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Figure 4. Illustration of informal filtering by differencing. When the P-T
series is formed, low frequency information (i.e., much lower than
the center frequency of the filter) is attenuated. The left
illustration shows the effect of differencing when the input is
the sum of a 2 Hz and a 0.167 Hz signal (both of the same
amplitude); the right, the effect of differencing on the sum of
a 2 Hz and a 0.333 Hz signal.
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Figure 5. Impulse response of F1. False alarms can be reduced by deactivating
detection (winnowing) long enough to allow passage of the wavelet
that corresponds to the first minimum of the response (above).
Winnowing is accomplished by using the input parameter Filhi. Filhi
defines a short window length, not the corner frequency of a formal
bandpass filter.



Estimating the Dispersion of the Background Noise and Forming the Thresholds

The dispersion (variability) of the background noise is estimated in two
routines, PONE and PTWO. In PONE, the rectified P-T values are compared
to a threshold for the noise, Thx (typically 1.5625xs'). Values less than Thx
are put into a 20-element array, and when this array is full, PTWO is called.
PIWO picks the maximum of the 20 rectified values, re-initializes the 20-element
array, and averages the current maximum value with the 15 previous ones. The
average value thus obtained is s'. For zero-mean normally distributed P-T
values, s' is an estimate of twice the sample standard deviation of the P-T
values. Examples of the correspondence of s' to s (the sample standard
deviation of the P-T values) are given in Figures 6A-6J. Although there are
exceptions (Figure 6A), typically the correspondence is approximately linear.

The two thresholds for detecting signals, Thl and Th2, are formed from s'
by using factors Xthl and Xth2: Thl = Xthlxs', Th2 = Xth2xs'. The threshold
for timing the onset Th3 is formed in the same manner: Th3 = Xth3xs'. Values
for Xthl, XthZ, and Xth3 are selected by the operator; typical values are
Xthl = 2., Xth2 = 1.5, Xth3 = 1.

Figure 6. The value s' plotted as a function of the sample standard deviation,
s. To avoid running of ink on the plots, only every 16th point was
plotted. Data for ten stations are shown on the next five pages.

INTERVAL OF ESTIMATE, 1980

FIGURE STATION DAY HOUR : MINUTE
6A ANMO 288 15:00
289 15:00
6B BCAO 288 06:00
289 06:00
6C CHTO 283 00:00
284 00:00
6D CTAO 279 12:00
280 12:00
6E GUMO 281 00:00
282 00:00
6F GRFO 282 14:00
283 14:00
6G KONO 275 17:00
276 17:00
6H MAJO 282 00:00
283 00:00
61 TATO 285 00:00
286 00:00
6J ZOBO 287 00:00
288 00:00
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Detectigg an Event

Events are detected in subroutine EVENT, as described in V. above. This
subroutine calls two others. One is WBUFF; it writes values into buffers
when an event is judged possible. The other is IBINGO; it sets flags when an
event has been declared.

For three rectified P-T values greater than the signal threshold Th2, with
one of them greater than the signal threshold Thl, the detector may be thought
of as searching for "Z" (or inverted "Z') shaped wave forms. For four
rectified values greater than Th2, the detector may be thought of as searching
for '"M' or '"W' shaped wave forms. Alternatively, for j rectified P-T values
(j>4) greater than Th2, the detector may be thought of as searching for
changes in stationarity of the input process (complicated waveforms are easily
detected). Figure 7 is a schematic of two signals that fulfill detection
requirements.

Figure 7. Illustration of two signals that meet detection requirements. The
"Z'" waveform on the left shows three P-T values greater than Th2,
with one of them greater than Thl. The '"W' waveform on the right
shows four P-T values greater than Th2, with all of them less than
Thl. Although these models show consecutive P-T values greater
than a threshold, it is important to note that the algorithm does
not require that the P-T values be consecutive.

14



Estimating Onset and Other Parameters of Signal

When a detection has been made, subroutine ONSETQ is called. The time
(t4, Figure 8) a P-T value first exceeded ThZ is available to ONSETQ. To
estimate the onset of the signal, threshold Th3 (Th3<Th2) is used. The search
(with Th3) for the onset begins two P-T values before t4 (i.e. to, Figure 8)
provided t, occurs within an appropriate time frame. (The size of the time
frame is the signal period or 1.0 sec, whichever is greater.) Otherwise, the
search begins at ts, provided it occurs within the time frame. In the time
frame, when the P-T value associated with t, (i=2, 3, 4) exceeds Th3, the
onset is defined as t. ;, provided t.-t. ; <0.5 sec; otherwise, the onset

tin‘e iS ti'O- 5.

RECTIFIED P-T VALUES

THRESHOLDS
Th | D G e G em— - - e e o g - ——
Th 2 =—=———————- e -
Th 3 ————— —|—--——.—.-___

i=1 234 5 6
t (sec)

Figure 8. Timing the onsets of a signal. Six rectified P-T values are shown.
The first P-T value of the detection happened at time ty- Upon
detection of the event, the algorithm looked back two P-T values
before t, and compared them to Th3. In the illustration, the
P-T value at t, exceeded Th3. The onset of the signal is estimated
as the time of the preceding peak or trough (tl), subject to certain
restrictions imposed by time windows (see text).
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Routine ONSETQ calls ONSET, a routine that estimates the quality of the
onset, its polarity, and both maximum amplitude and average period of the
signal (first eight P-T values). (Only a preliminary estimate of signal
period was made in ONSETQ.) Traditionally, an analyst has expressed the
quality of his pick purely qualitatively as e or i, depending upon whether
the signal onset is judged emergent or impulsive.  We have provided a more
quantitative estimate of the quality of signal onset. The estimate relates
to the signal-to-noise ratio (SNR) of the amplitude of the onset: the SNR
is the rectified amplitude (P-T value C, Figure 9) divided by s', rounded to
the nearest integer, and truncated at nine (if necessary). The SNR of each
of the two rectified P-T values before the onset (A and B, Figure 9) and the
SNR of each of the two rectified P-T values after the onset (D and E, Figure 9)
are calculated in the same manner. The quality of the onset is expressed as
these five integers (see Figure 9).

SNR Series - A, B__,_¢C _ _D |
S’ s’ S’ S’ S’

= 0'1'1'1’2

Figure 9. Illustration of what the SNR series means. In this illustration,
P-T value C exceeds Th3, D exceeds Th2, and E exceeds Thl. Value
A/s' is <0.5 and hence is rounded to 0.
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The best possible quality would be expressed as 00999 and a poor one might
be expressed as 11111, where the SNR of the estimated onset is the third integer
in the series of five. The quality numbers are useful (1) to evaluate
statistically the quality of the estimated onset by the relationship of each
digit to s' (s is related to s' by Figure 6) and (2) as a quantification of
the amplitudes of the onset of the signal (the last three quality numbers
quantify the first three P-T values of the detected signal).

ONSET outputs parameters of the detection, as shown in the example below.

C 1 00125 2 360 00 36 40.62 0.432E+05 .52 0.8235E+04
where

C is the polarity of the first break (C or D)

1 is the mumber of P-T values looked back, relative to t4 (0, 1, or 2)

00125 is the SNR series (the quality mmbers)

2 360 00 36 40.62 is the time of onset (yr, day, hr, min, sec)

0.432E+05 is the maximum amplitude of the first 8 P-T values (counts)

0.52 is the average period of the first 8 P-T values (sec)

0.8235E+04 is s' (counts)

Using the Detector to Activate Recording of a Detected Event

Typically, the event detector is used in an operational recording system
(1ike the SRO) to initiate the recording of short-period (SP) data on tape and
to output detection messages by a printer. When this is done, it is necessary
to disable the detector for a short time upon the detection of an event to
prevent excessive additional detections immediately after the first one. It
is also necessary to decrease the sensitivity of the detector (increase the
thresholds) to prevent immediate re-triggers in the coda of events, where the
P-T values are likely to be somewhat larger than those before the event.
However, it is not desirable to disable new detections for too long a time or
to raise detection thresholds too high, for fear of missing the onsets of
significant new events.

As implemented in the SRO system, the algorithm instructs the SP tape
write subroutine to write at least 196 seconds of SP data on tape, including a
minimm of 20 to a maximum of 49 seconds of pre-onset data (depending on the
amount of data in the SP buffer, which is partially flushed out periodically).
The thresholds Thl, Th2, and Th3 are doubled (in ONSET) and event detection
capability is disabled until a minimum of 49 to a maximum of 78 seconds of
data after the onset have been recorded on tape. The detector is then
re-enabled, so that new detections using the raised thresholds are possible
during the recording of the last 98 seconds of data. Each additional detection
during the recording of data on tape will cause the thresholds to again be
doubled, and 196 seconds of data after the latest detection to be recorded. As
the final 98 seconds of data are being recorded, PIWO calculates new estimates
of s'. Hence, by the time recording on tape ceases, distinct new signals
larger than the post-event background can be detected by using the post-event
estimate of s'.

17



EXPERIENCE IN TUNING THE DETECTOR

Experience with our Model Data

The processing of models of seismic data is useful to describe the
performance of a detector under idealized conditions. In particular, the
models are useful for estimating false alarm rates when event-free time series
are processed. To construct the event-free time series, we (1) selected four
hours of short-period data (station GRFO) that did not display any events and
(2) summed this series with itself 10 times, each time shifting the original
by ix49 sec (i = 1, 2, 3...10). Thus, if any unseen signals were in the
original series, they were significantly attenuated in the sum. The auto-
correlation for the sum series (Figure 10) demonstrates the absence of strong
periodic properties, and the probability density estimate for the series
(Figure 11) appears approximately normal. To describe the dispersion of the
filtered (F1) 4-hour P-T series, each P-T value of the filtered series has
been rectified and normalized by dividing it by the associated value of the
estimate of s (s'/2). The cumulative distribution of these P-T values is
shown in Figure 12. There are an average of 3.6 P-T values/sec.

The model time series (sum series, above) has been used to demonstrate
the false alarm rate for different settings of the parameters. To summarize,
there are five sets of major parameters that may be varied to tune the
detector:

1. Threshold factors Xthl, Xth2, and Xth3

2. Window length.

3. Filhi and Fillo, these are lengths of subwindows of the window length.

4. Number of P-T values, greater than the thresholds, that are required
for detection. There are two subalgorithms here: Subalgorithm 1
declares a detection if one P-T value is greater than Thl and any two
other P-T values are greater than Th2; subalgorithm 2 declares a
detection if any j (j>m) rectified P-T values are greater than Th2
but are less than Thl. Generally m>4.

5. Filter type. F1 (Figure 2) was used for the tests.

18
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Figure 12. Cumulative distribution of the normalized P-T values as
a function of the estimate of s (s'/2).
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For Figure 13, parameters varied are Xthl, Xth2, and m. The window
length (4 sec), Filhi (0.2 sec), Fillo (2 sec), and Xth3 (1.0) are held
constant. For two values of m (4 and 6), Figure 13 shows false alarms as a
function of Xthl and Xth2, and for each value of the variables, two false
alarm rates are shown. One (the upper one) is for subalgorithm 1 and the
other (the lower one) is for subalgorithm 2. For instance, for m = 4, Xthl = 2,
Xth2 = 1.0 (Figure 13), there are 1.0 FA/hr due to subalgorithm 1 and 9.2 FA/hr
due to subalgorithm 2. For m = 6, the same settings of the thresholds produce
only 0.8 FA/hrl, all due to subalgorithm 1. Thus, increasing the number of
cycles required for the detection (m = 4 corresponds to two cycles and m = 6
corresponds to three cycles, steady state) significantly reduces the false
alarm rate. The illustration demonstrates that the most pronounced difference
in the rates (i.e., those for m = 4 vs those for m = 6) is for the large
values of Xthl paired with the small values of Xth2, as one might expect.

Although they can be employed to produce large changes in the false
alarm rate, the subwindows Filhi and Fillo normally fine tune the detector.
The value of the subwindows is important (in reducing false alarms) mainly when
small values of Xth2 are employed. This is demonstrated in Figure 14: For
Xth2 = 1.0, changing Filhi from 0.1 sec to 0.5 sec does not appreciably reduce
the false alarm rate; however, for Xth2 = 0.8, changing Filhi as above reduces
the false alarms by about 20% for m = 4 and substantially for m = 6. Changing
the value of subwindow Fillo affects the false alarm rate somewhat more
substantially, as demonstrated by Figure 15 where the false alarm rates are
displayed for Fillo = 1.0 sec to 4 sec in 0.5 sec increments. For both
values of m and for the larger value of Xth2 (1.3), reducing Fillo from 4.0
sec to 1.0 sec decreases the false alarm rates by about 50%, and for the
smaller values of XthZ, there is a much larger reduction. However, there is
a price associated with the reduction in the false alarms. For Filhi,
increasing it to too large a value likely will cause high frequency signals of
about 1-2 cycles of duration to be missed. For Fillo, decreasing it to too
small a value likely will cause onsets of emergent events to be timed late and
small emergent signals to be missed altogether.

The data of Figures 13, 14, and 15 have been used to demonstrate the false
alarm rates when artificial noise is input to the algorithm. How well the
values of Figures 13, 14, and 15 estimate false alarm rates for other filtered
(F1) series very likely will depend largely on the correspondence between the
distributions of their normalized P-T series to that of the artificial noise
and on the correspondences of the average mumber of P-T values per unit time.

1Differences between experimental measurements of 0.2-0.3 FA/hr translate to
1 FA in the 4-hr sample. One likely source of this small variation is the
start-up of processing. Another likely source is a small increase in s'
caused by including values in its estimate (for m = 6) that were declared
signals for m = 4.
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Experience with Blandford's Model Data

All references in this section are of the report, Blandford et al., 1981.
Blandford and his coworkers generated two sets of model data. One was con-
structed from real seismic data recorded at Pinedale, Wyoming and the other was
constructed from the same type of data recorded at NORSAR. The results
reported here are for the Pinedale data (20 sps), we have not yet processed
the NORSAR data (10 sps). The method of constructing the artificial noise
was described in their report (1981, p. II-2).

A 4096 point data window is read in and checked for signals
and data dropouts. If there are none, then the data are 5% cosine
tapered, Fourier transformed, the phase at each frequency is
assigned randomly, and the data are transformed back to the time
domain. Then the noise is tapered with a full 50% taper and added
to the previous window (which has also been tapered) with a 50%
offset. Because the sum of the two 50% tapers does not yield a
constant root-mean-square amplitude this fact is corrected for by
multiplying the summed time series by an analytical function of
time. The successive overlapped portions are read out to the
final noise tape leading to a continuous random noise field whose
spectrum and amplitude vary smoothly as does the true noise field.

The next step in the process is to add in the signals...

Thirty-one signals recorded at Pinedale were added to the noise in the
following manner by them (1981, p. III-2).

The signal windows are two minutes long and the P starts were
centered in the window. Thus, there is one minute of noise in
front. The signal windows were tapered with a 25% cosine taper to
avoid abrupt starts and stops, then added to the noise. Each
signal was added to the noise four times, first with the maximum
equal to 1/2 the raw amplitude maximum in the 10 minute window,
and then, at 1/4, 1/8 and 1/16 the amplitude. Thus, with the 31
signals...there are a total of 4x31 = 124 10-minute (12000
points) windows. In each window a signal begins at the 9th minute
(point 10800). The data are continuous from window to window.

These data were processed with a mumber of different algorithms by them and
others (1981). A detection was scored if a trigger occurred within 30 sec
after the signal had been added (1981, p. II-3).

To enable analyzing the different algorithms on an equal basis, they
(1981) devised a scheme to produce comparability by using a reference level.
First, they (1981, p. 12) calculated the false alarm rate (FA/hr) and the
""corrected number of detections."
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A corrected mumber of detections is...determined by subtracting an
estimate of the number of detections which are probably false
alarms. This is determined approximately as the false alarm rate
times the total signal windows in which a detection is not
expected to occur. These signal windows are taken to be those

in the 3rd and 4th S/N level, plus 1/2 of those in the 2nd S/N
level.

There are a total of 124 windows and each signal window is (0.5/60) hours; and,
as explained above, they assume that there are no detectable signals in (2.5/4)
of the windows. Thus the mumber of detections that are probab